- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kaitner, B., Meštrović, E. & Pavlović, G. (1997). J. Chem. Crystallogr. Submitted.
- Kamenar, B., Kaitner, B., Ferguson, G. & Waters, T. N. (1990). Acta Cryst. C46, 1920-1923.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Stoe & Cie (1991a). DIF4. Diffractometer Control Program. Version 7.08. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1991b). REDU4. Data Reduction Program. Version 7.08. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1997). C53, 1234-1236

A New Pentachlorotellurate(IV): catena-Poly[hexakis(acetonitrile)aluminium tris-[tetrachlorotellurate(IV)- μ -chloro] acetonitrile]

F. FAVIER, J. L. PASCAL, C. BELIN AND M. TILLARD-CHARBONNEL

Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, ESA 5072, CC15, Université de Montpellier II, Sciences et Techniques du Languedoc, 2, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France. E-mail: pasfav@univ-montp2.fr

(Received 16 October 1996; accepted 26 March 1997)

Abstract

In the title compound, $[Al(CH_3CN)_6][TeCl_5]_3.CH_3CN$, the polymeric anions form infinite helical chains from apex-sharing distorted octahedral TeCl₆ units. These anionic chains are stabilized by $[Al(CH_3CN)_6]^{3+}$ counterions.

Comment

From tetra- to hexahalide, all tellurium(IV) halide structures are based on octahedrally or pseudo-octahedrally coordinated tellurium (Hazell, 1966; Adams & Lock, 1967; Collins & Webster, 1972; Krebs, Bonmann & Gretenkord, 1992). TeCl₄ has been described as TeCl³₅Cl⁻, with Te and Cl atoms arranged within a three-dimensional cubic array to form distorted Tecentred octahedra displaying three short and three long Te—Cl bonds (Buss & Krebs, 1971). This structural arrangement has also been encountered in TeCl₃X moieties with $X = AlCl_4$ (Krebs, Buss & Altena, 1971), SbF₆, AsF₆ (Christian, Collins, Gillespie & Sawyer, 1985), ClO₄ (Favier, 1991), MoCl₄ (Beck, 1991), *etc*. On the other hand, A_2 TeCl₆ salts (where A = K, Rb or NH₄) contain discrete and regular octahedral hexa-

chlorotellurate(IV) anions (Webster & Collins, 1973; Armstrong, Dufort & Powell, 1991).

Between the three-dimensional condensed tellurium tetrachlorides and the discrete molecular species of tellurium hexachloride, intermediate polymeric moieties are formed, depending on the number of Cl atoms per Te atom. In $[H_9O_4]_n[Te_2Cl_9]_n$, with a Cl/Te ratio of 4.5, the Te₂Cl₁₀ dimeric units (two TeCl₆ octahedra condensed by edge-sharing) polymerize into infinite $[Te_2Cl_9]_n^{n-1}$ zigzag chains through Te-Cl-Te bridges (Krebs, Bonmann & Gretenkord, 1992). [PCl₄][TeCl₅] contains distorted octahedral TeCl₆ units fused by corner-sharing within an infinite $[\text{TeCl}_5]_n^{n-}$ chain (Collins & Webster, 1972; Krebs, Buss & Berger, 1973). This assertion is corroborated by the structure of the title compound, (I), which mainly consists of an infinite pseudo-helical anionic chain of $[\text{TeCl}_5]_n^{n-}$ stabilized by n/3 discrete $[Al(CH_3CN)_6]^{3+}$ units.

The structure also contains free molecules of acetonitrile. The helical unit comprises three non-equivalent Te atoms in distorted octahedral environments. Each

Fig. 1. The molecular structure of the title compound. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

) CI

Te atom is surrounded by four terminal Cl atoms Refinement (one short Te---Cl bond of 2.33 Å and three longer ones at around 2.44 Å). Two bridging Cl atoms lie in the range 2.66–2.99 Å. Except for the Te— μ_2 -Cl bond of 2.99 Å, which is relatively long, these distances are close to those found in [PCl₄][TeCl₅] or $[H_9O_4]_n[Te_2Cl_9]_n$. Furthermore, similar angular distortions are observed in these compounds. Two nonequivalent [Al(CH₃CN)₆]³⁺ counterions sit inside channels delimited by four $[\text{TeCl}_5]_n^{n-1}$ units. The Al atoms, All and Al2, lying in sites 4a and 4c, respectively, are in slightly distorted octahedral environments, as are Mn (Weller, Mai & Dehnicke, 1996), Fe (Stork-Blaisse, Verschoor & Romers, 1972), Co and Ni (Veith, Gödicke & Huch, 1989) in related cations. The N-Al-N angles are all close to 90°, while Al-N bond lengths range from 1.92(1) to 1.99(2) Å.

Experimental

The serendipitous synthesis of the title compound occurred during the course of an electrochemical synthesis of mixed tungsten(IV)/tellurium(IV) chloride complexes in acetonitrile. The electrochemical cell was operated at 300 μ A cm⁻² with platinum electrodes with an equimolar concentrated solution of WCl₆ and TeCl₄ in CH₃CN. After a few days, long yellow needles ($10 \times 0.5 \times 0.5$ mm) appeared in abundance on both electrodes. Qualitative electron microprobe analysis revealed the presence of Te, Cl and surprisingly of Al in the approximate ratio 3/15/1. The Al in the crystals appears to come from partial electrolytic dissolution of the Al-alloy electrode supports. Reagents as well as products were handled in a glove box under dry argon or on vacuum line (1.33 Pa).

Crystal data

Cell parameters from 23 reflections $\theta = 12.23-22.14^{\circ}$ $\mu = 3.115 \text{ mm}^{-1}$ T = 293 (2) K Needle $0.48 \times 0.26 \times 0.10 \text{ mm}$ Yellow
2320 reflections with $I > 3\sigma(I)$ $\theta_{max} = 23.0^{\circ}$ $h = 0 \rightarrow 21$ $k = 0 \rightarrow 44$ $l = 0 \rightarrow 10$ 3 standard reflections frequency: 60 min intensity decay neces

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$
R(F) = 0.038	$\Delta \rho_{\rm max} = 1.04 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.079$	$\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.013	Extinction correction: none
2316 reflections	Scattering factors from
286 parameters	International Tables for
H atoms: see below	Crystallography (Vol. C)
$w = 1/[\sigma^2(F_o^2) + (0.0354P)^2]$	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_j \cdot \mathbf{a}_j.$$

	- 1	, , , , ,	<i>j</i> · <i>j</i>	
	x	у	z	U_{eq}
Te l	0.95452 (5)	0.64674 (2)	0.16984 (13)	0.0443 (3)
Te2	0.73447 (5)	0.65638 (2)	0.83355 (13)	0.0427 (3)
Te3	0.83336 (5)	0.55391 (2)	0.51049 (12)	0.0455 (3)
All	0	0	0	0.038 (2)
Al2	0.0222 (4)	1/4	0.3380 (9)	0.054 (2)
C11	0.6707 (2)	0.61914 (12)	0.9835 (5)	0.076 (2)
Cl2	0.6404 (2)	0.65998 (11)	0.6874 (5)	0.0702 (15)
C13	1.0089 (3)	0.60675 (12)	0.0259 (7)	0.135 (3)
Cl4	0.7908 (2)	0.60079 (10)	0.6719 (5)	0.0686 (14)
Cl5	0.7910(3)	0.51685(11)	0.6637 (6)	0.088 (2)
Cl6	0.8718 (3)	0.50996 (11)	0.3734 (5)	0.099 (2)
Cl7	1.0047 (3)	0.68905 (12)	0.0386 (6)	0.096 (2)
C18	0.9011 (2)	0.59775 (12)	0.3134 (6)	0.085 (2)
C19	0.7229 (2)	0.55150 (13)	0.3971 (6)	0.094 (2)
C110	0.8371 (3)	0.65511 (12)	0.9973 (6)	0.104 (2)
C111	0.9404 (2)	0.55175 (12)	0.6328 (6)	0.087 (2)
C112	1.0484 (2)	0.64465 (14)	0.3090(7)	0.108(2)
C113	0.9100 (3)	0.68833 (13)	0.3202 (6)	0.122(2)
C114	0.7959 (2)	0.69438 (13)	0.6906 (6)	0.103(2)
CI15	0.6928 (3)	0.69997 (13)	0.9528 (6)	0.108 (2)
N1	-0.0300(5)	0.0214 (3)	-0.1642(14)	0.041 (3)
Cl	-0.0471 (8)	0.0351 (4)	-0.2519(17)	0.049 (5)
CH	-0.0720(8)	0.0531 (4)	-0.3654 (18)	0.078 (6)
N2	-0.0796 (6)	-0.0276(3)	-0.0039(13)	0.046 (4)
C2	-0.1267 (8)	-0.0417 (4)	0.0065 (18)	0.052 (5)
C22	-0.1893 (8)	-0.0594(4)	0.0116 (19)	0.089 (7)
N3	0.0502 (6)	-0.0313 (3)	-0.1008(13)	0.043 (4)
C3	0.0819 (7)	-0.0496 (4)	-0.1566 (18)	0.047 (5)
C33	0.1191 (8)	-0.0731 (4)	-0.2271 (19)	0.084 (7)
N4	0.0781 (9)	1/4	0.175 (2)	0.062 (6)
C4	0.1109 (11)	1/4	0.075 (3)	0.058 (8)
C44	0.1512(11)	1/4	-0.033 (2)	0.071 (8)
N5	0.0206 (6)	0.2972 (3)	0.3350 (16)	0.063 (4)
C5	0.0253 (8)	0.3247 (4)	0.3365 (19)	0.060 (5)
C55	0.0359 (8)	0.3599 (4)	0.341 (2)	0.088 (6)
N6	-0.0327 (9)	1/4	0.501 (2)	0.070 (7)
C6	-0.0522 (14)	1/4	0.603 (3)	0.078 (9)
C66	-0.0885 (14)	1/4	0.725 (3)	0.118 (13)
N7	-0.0583 (11)	1/4	0.226 (2)	0.073 (7)
C7	-0.1052 (11)	1/4	0.162 (3)	0.050 (7)
C77	-0.1599 (12)	1/4	0.077 (3)	0.092 (10)
N8	0.1023 (10)	1/4	0.450(2)	0.059 (6)
C8	0.1457 (12)	1/4	0.521 (3)	0.056 (7)
C88	0.2005 (12)	1/4	0.608 (3)	0.093 (10)
N9	0.3045 (11)	0.1978 (5)	0.677 (3)	0.147 (9)
C9	0.2917 (11)	0.1706 (6)	0.664 (3)	0.103 (9)
C99	0.2737 (10)	0.1387 (4)	0.663 (2)	0.109 (8)

Table 2. Selected geometric parameters (Å, °)

Te1-C13	2.447 (5)	Al2—N7	1.96 (2)
Te1-C17	2.405 (5)	Al2—N8	1.95 (2)
Te1-C18	2.702 (5)	N1—C1	1.10(2)
Te1-C112	2.339 (5)	C1—C11	1.45 (2)
Te1-C113	2.452 (5)	N2-C2	1.11 (2)
Te2—C11	2.500 (5)	C2—C22	1.45 (2)

Te2—Cl2	2.388 (5)	N3—C3	1.13 (2)
Te2—C110	2.628 (5)	C3—C33	1.41 (2)
Te2-Cl14	2.454 (5)	N4C4	1.20(3)
Te2-C115	2.315 (5)	C4—C44	1.35 (3)
Te3—Cl4	2.663 (5)	N5—C5	1.14 (2)
Te3—Cl5	2.329 (5)	C5—C55	1.46 (2)
Te3—Cl6	2.403 (5)	N6—C6	1.09 (3)
Te3—C19	2.482 (5)	C6—C66	1.43 (4)
Te3—Cl11	2.464 (5)	N7—C7	1.14 (3)
All—NI	1.967 (14)	C7—C77	1.38 (3)
Al1N2	1.952 (12)	N8—C8	1.12 (3)
A11—N3	1.922 (12)	C8—C88	1.40(3)
A12N4	1.99 (2)	N9—C9	1.15 (2)
Al2—N5	1.947 (13)	C9—C99	1.37 (2)
Al2—N6	1.97 (2)		
Cl3—Te1—Cl8	89.3 (2)	Cl5—Te3—Cl11	87.6 (2)
CI7-Te1-Cl13	89.0 (2)	C15Te3C14	87.5 (2)
Cl12-Te1-Cl3	88.6(2)	C16—Te3—C19	89.3 (2)
Cl12-Te1-Cl7	91.3 (2)	Cl6—Te3—Cl11	89.1 (2)
C112—Te1—C18	88.1 (2)	Cl9-Te3-Cl4	91.6 (2)
Cl12-Te1-Cl13	86.9 (2)	N2—A11—N1	89.9 (5)
Cl13-Te1-Cl8	92.9 (2)	N3A11N1	90.9 (5)
Cl1-Te2-Cl10	90.3 (2)	N3—A11—N2	91.2 (5)
Cl2-Te2-Cl1	90.6 (2)	N5	89.8 (5)
Cl2Te2Cl14	89.4 (2)	N5—Al2—N6	90.2 (5)
C115—Te2—C11	88.9(2)	N5—A12—N7	88.7 (5)
Cl15—Te2—Cl2	89.4 (2)	N5—A12—N8	91.3 (5)
Cl15—Te2—Cl10	88.2 (2)	N7—Al2—N6	91.4 (9)
Cl15—Te2—Cl14	89.3 (2)	N8—Al2—N4	91.1 (8)
Cl5—Te3—Cl6	90.1 (2)	N8—A12—N6	88.4 (9)
C15—Te3—C19	87.5 (2)		

The structure was solved by direct methods using *SHELXS86* (Sheldrick, 1985). Full-matrix least-squares refinements made by the *SHELXL93* program (Sheldrick, 1993) were carried out using anisotropic displacement parameters for Te, Al, Cl atoms and for C and N atoms of the free solvent molecule. H atoms were included in idealized positions with displacement parameters fixed to 1.2 times those of the C atoms.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989). Cell refinement: *CAD-4 Software*. Data reduction: own program. Molecular graphics: *ZORTEP* (Zsolnai & Pritzkow, 1994).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1301). Services for accessing these data are described at the back of the journal.

References

- Adams, D. M. & Lock, P. J. (1967). J. Chem. Soc. pp. 145–147. Armstrong, R. L., Dufort, P. & Powell, B. M. (1991). Can. J. Phys. 69, 137–141.
- Beck, J. (1991). Z. Naturforsch. Teil B, 46, 183-186.
- Buss, B. & Krebs, B. (1971). Inorg. Chem. 12, 2795-2800.
- Christian, B. H., Collins, M. J., Gillespie, R. J. & Sawyer, J. F. (1985). Inorg. Chem. 25, 777–788.
- Collins, P. H. & Webster, M. (1972). Acta Cryst. B28, 1260-1264.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Favier, F. (1991). Thesis, University of Montpellier, France.
- Hazell, A. C. (1966). Acta Chem. Scand. 20, 165-169.
- Krebs, B., Bonmann, S. & Gretenkord, K. (1992). Z. Naturforsch. Teil B, 47, 93–103.
- Krebs, B., Buss, B. & Altena, D. (1971). Z. Anorg. Allg. Chem. 386, 257–269.
- Krebs, B., Buss, B. & Berger, W. (1973). Z. Anorg. Allg. Chem. 96, 1-15.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved

- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stork-Blaisse, B. A., Verschoor, G. C. & Romers, C. (1972). Acta Cryst. B28, 2445-2453.
- Veith, M., Gödicke, B. & Huch, V. (1989). Z. Anorg. Allg. Chem. 579, 99-106.
- Webster, M. & Collins, P. H. (1973). J. Chem. Soc. Dalton Trans. pp. 589-594.
- Weller, F., Mai, H. J. & Dehnicke, K. (1996). Z. Naturforsch. Teil B, 51, 298-300.
- Zsolnai, L. & Pritzkow, H. (1994). ZORTEP. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 1236-1238

A Copper(II) Complex of a New Chiral Tridentate Imidazoline Ligand

FRANK M. BOHNEN,^{*a*} RICHARD GODDARD,^{*a*} ALEXANDER B. E. MINIDIS,^{*a*} ALEXANDRE ALEXAKIS^{*b*} AND ANDREAS PFALTZ^{*a*}

^aMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany, and ^bLaboratoire de Chimie des Organoelements, URA 473 CNRS, 4, Place Jussieu – Tour 44-45, 75252 Paris CEDEX 05, France. E-mail: goddard@mpi-muelheim.mpg.de

(Received 29 October 1996; accepted 5 March 1997)

Abstract

The title compound, $\{2,6-bis[(4R,5R)-1,3-dimethyl-4,5-diphenylimidazolidin-2-yl-N¹]pyridine-N}chloro$ copper(II) hexafluorophosphate 0.5-methanol solvate,[CuCl(C₃₉H₄₁N₅)]PF₆.0.5CH₃OH, is the first exampleof a metal complex containing the new chiral ligand,2,6-bis[(4R,5R)-1,3-dimethyl-4,5-diphenylimidazolidin-2-yl]pyridine. Complexation of the ligand to the Cuatom results in only a slight distortion from idealized C₂symmetry in the crystal in spite of its less symmetricalenvironment.

Comment

The compound 2,6-bis[(4R,5R)-1,3-dimethyl-4,5-diphenylimidazolidin-2-yl]pyridine has been prepared in an enantiomerically pure form as part of a study to evaluate its properties as a chiral ligand for asymmetric catalysis (Pfaltz, 1996). The structure of a copper complex, (I), has been determined in order to establish the geometry of the ligand when it is coordinated to the metal.